

Technically Speaking *Identifying the Correct Moulding Technique*

With the development of mass production, moulding interchangeable parts became a critical and advantageous process. Prior to mass production, all components were unique and equipment was manufactured by highly skilled craftsmen. Moulding allowed manufacturers to produce large volumes of replica parts for new equipment and repair purposes.

In 1839, Charles Goodyear developed the first processable natural rubber compound, paving the way for rubber moulding. His simple compound included natural rubber, sulfur, and an inorganic accelerator (white lead).

Today, there are five primary moulding techniques used by rubber and plastic manufacturers. Techniques include compression moulding, transfer moulding, injection moulding, cast moulding and extruding. Each technique has its distinct advantages and disadvantages:

Technique	Advantages	Disadvantages
Compression Moulding	Minimal material wasteEconomical tooling costsBest for small quantitiesGood for large diameter components	More labour intensiveLonger cure & cycle timeLoose tolerances
Transfer Moulding	Minimal excess flashGood for complex & delicate partsTight tolerances vs. compression	More expensive moulds vs. compressionHigh in material waste
Injection Moulding	Less excess flashGood for complex & delicate partsLow labour costsExcellent for high volumes	Highest tooling costsHigh in material waste
Cast Moulding	Most economical tooling costsIdeal for small runsEasy to manipulate material properties	Loose tolerancesRelatively labour intensiveLonger cycle & cure times
Extrusion	Least complex mouldsLow mould & die costsTypically lower unit costs	Simple shapesMinimum runsLoose tolerances

Hi-Tech Seals works with a select group of manufacturers, specialized in unique materials/compounds, dimension parameters and moulding techniques to bring our clients the best option for their application. Over the next five Technically Speaking articles we will look at the various moulding processes.